
Orthogonality Relations for Group Characters

Proofs of the orthogonality relations for characters of group representations
often seem computational and unenlightening, even from authors like J.P. Serre
and Michael Artin who are known for the quality of their exposition. I learned
this proof from a paper of Raoul Bott (writing about representations of compact
Lie groups), and I think it deserves to be better known.

1. Let G be a finite group with n elements. We will view a representation
of G as as “G-module,” that is, a vector space U (over a field K, which
we will generally take to be C) equipped with a (left) action of G on
U . Equivalently, it can be viewed as a homomorphism T mapping G to
the group of invertible linear transformations of U ; we will use these two
points of view interchangeably. (It can also be viewed as a module over
the group ring K[G], but we will say no more about that.) A G-map from
a G-module V to a G-module W is just a linear map L which respects the
G action, that is L(gv) = gL(v). A G-isomorphism is a G-map which is
an invertible linear transformation; its inverse will also be a G-map.

2. If U is a G-module, let UG denote the subspace of G-invariant elements
of U , that is, the set of all u ∈ U such that gu = u for all g ∈ G. Define the
averaging map AU : U → U by u 7→ 1

n

∑
g∈G gu. (This does not work

when the characteristic of K divides n, but it works fine when K = C.)
When u ∈ UG, AU (u) = u. It is not hard to see that gAU (u) = AU (u),
so that AU (u) ∈ UG. As a result AU = A2

U is a projection from U → UG.
(It is also not hard to see that AU (gu) = A(u), from which it follows that
AU is a G-map.) The trace trAU is the dimension of UG, since, in an
appopriate basis, a projection map has only 0s and 1s on the diagonal.

3. If U is a G-module, the character of U is a mapping χU : G → K which
maps g ∈ G to the trace of T (g). In this notation, the trace of the
averaging map AU is equal to 1

n

∑
g∈G χU (g).

4. If V is a G-module, we can make the dual of V , V ∗, into a G-module by
defining gµ = µ ◦ T (g−1). (It needs to be g−1 to make it a left action by
G.) When K = C, the character χV ∗(g) = χV (g). To prove this, note
that any eigenvalue λ of T (g) must be a root of unity, since G has finite
order. Thus λ−1 = λ.

5. If V and W are G-modules, we can make the tensor product V ⊗W into
a G-module such that g(v⊗w) = (gv)⊗ (gw). The character χV⊗W (g) =
χV (g)χW (g).

6. If V and W are G-modules, we can make the vector space of linear trans-
formations V → W , Hom(V,W ), into a G-module by defining gL =
T (g) ◦ L ◦ T (g−1) for L ∈ Hom(V,W ), g ∈ G. The invariant elements
Hom(V,W )G are precisely the G-maps V → W .
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7. The tensor product V ∗ ⊗W is G-isomorphic to Hom(V,W ). Under this
isomorphism, µ ⊗ w maps to the linear transformation which takes v 7→
µ(v)w. If µ is represented by the row-vector M⃗ and w is represented by the

column vector W⃗ , this linear transformation is represented by the matrix
W⃗M⃗ , the m× n product of an m× 1 matrix by a 1× n matrix. (How do
m and n relate to the dimensions of V and W?)

8. When V and W are irreducible representations, Schur’s lemma tells us
that when V is not isomorphic to W , any G-map V → W must be
equal to 0. In this case dimHom(V,W )G = 0. When V is isomorphic
to W and K is algebraically closed (as C is), Schur’s lemma tells us that
dimHom(V,W )G = 1.

9. If V and W are irreducible representations, it follows that

1

n

∑
g∈G

χV (g)χW (g) =
1

n

∑
g∈G

χV ∗(g)χW (g) by (4)

=
1

n

∑
g∈G

χV ∗⊗W (g) by (5)

= trAV ∗⊗W by (3)

= trAHom(V,W ) by (7)

= dimHom(V,W )G by (2)

=

{
1 if V is isomorphic to W

0 otherwise
by (8)
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