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In this paper I will outline the theory of representations of finite groups, at a
level which I believe is appropriate to the end of a full-year introductory course in
abstract algebra or the beginning of a second-year course.

Why another exposition of this material, especially given the characteristi-

cally beautiful book of [Serre]? The reason is this: the introductory material in

Serre's book was written for quantum chemists, and therefore minimized the use of
abstract linear algebra. As with most of the standard treatments, the approach taken
can seem computational and unmotivated, especially in the treatment of the ortho-
gonality relations. Here we give an interpretation of the orthogonality relations as
counting up G-isomorphisms—an interpretation which I first saw in a paper of
|Bott] 1n the Lie-group context, and which deserves a wider audience. Readers al-
ready familiar with the theory of group representations may wish to skip directly to
section 8, referring back as necessary to material in earlier sections (especially the
material on Hom(V,W) in propositions 4.3 and 7.2, and the material on averaging
in section 3). Finally, section 10 presents an introduction to the structure theory of
semusimple rings as a series of exercises with detailed hints, which places the mate-

rial on group representations in a more general context.
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(0. Prerequisites

Most of the prerequisites for this material are covered in a year's course in
abstract algebra. The heaviest demands are in linear algebra, where Jordan canoni-
cal form 1s referred to several times in passing. Of course the basics of group theo-
ry are assumed, as are the elementary notions of field extensions. From ring theo-
ry, we assume the definitions of terms such as algebra, division ring and division
algebra, zero divisor, and a few others. In the final section the reader will need to
have a firm grasp on the basics of ideals and modules. A familiarity with Zorn's
lemma arguments will help there, too.

The most important prerequisite which is generally not covered in a first
year algebra course 1s the notion of a tensor product. Usually, these spaces are
constructed by a wildly inifinite process using quotients of free modules; since we
need them only in the context of finite dimensional vector spaces, we offer the fol-
lowing sketch of a development of the subject:

Definition 0.1: Suppose that V and W are finite dimensional vector
spaces (over a field k). A tensor product of V and W is a vector space VW
with a bilinear map ®:VXW—T which is universal for bilinear maps from VW to
any other vector space, in the following sense: if L:VXW—U is a bilinear map,
there 1s a unique linear map A:V®OW—-U such that u(v,w) = A(®(v,w)), i.e. L =
Ao®.

The tensor product gives us a tool for reducing questions about bilinear

maps to questions about linear maps. Following standard notation, we write v®Qw
instead of ®(v,w). Rewriting the above definition, u(v,w) = A(v®w). Another
way of looking at this is that ® allows us to "factor out" the bilinear part of p. The

space V®W and the map &® are "big enough” to factor all bilinear maps, but "small

enough” so that this factorization 1is unique.
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Proposition (.2: Tensor products are unique: If VOW and ® are a tensor

product of V and W 1n the sense above, and V®'W and ®' are another tensor

product, then there 1s a (unique) 1Isomorphism ¢:VOW->VEO'W so that ®' = po®.

Proof: (Anyone who is familiar with the standard argument for the unique-

ness of a universal object could do this as an exercise. Anyone who 1s not should

make lots of drawings with little arrows to follow this argument). First, since ®' is

bilinear and ® has the universal property, we see that ¢ exists with ®' = (po®.

Symmetrically, since ® 1s bilinear and ®' has the universal property, there is a ¢'

such that @ = ¢'o®". It follows that ® = ¢'o®' = @'o(Ppo®) = (¢p'op)o®. Now by
the universal property of V®W and ®, applied to the bilinear map ® itself, there's
only one map from V®OW to itself such that ® = vo®. But the identity map on
VW, lyvew, and the map ¢'o¢ both have this property, hence ¢'o¢p = lyew. By
an exactly symmetrical argument, ¢od' = lyg'w. Thus ¢ 1s an isomorphism. By
the universal property, it is unique. ®

Since a tensor product of V and W is unique up to a unique isomorphism,
we are justified in calling VOW "the" tensor product of V and W as long as it ex-

1sts. The next proposition shows that we can always construct V®W when V and

W are finite dimensional (in fact, finite dimensionality is not necessary, but the
proot 1s more technical without it). The essential point is that a bilinear map 1s
completely specitied by where it takes pairs of basis elements, just as a linear map
1s specified by where it takes single basis elements.

Proposition 0.3: Let V and W be finite dimensional vector spaces. Then
a tensor product VW exists.

Proof: Let {vy,---,vp} be a basis for V, and {wy,--,wrp } be a basis for
W. Then we can take V®W to be the nxm dimensional vector space whose basis
elements are the nxm formal symbols vi®w; for 1<i<n, 1<j<m. Define the bilinear

map @ by the following rule:
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(Z{LlaiVi) ® (Z}ilijj) = Z1<i<n, 1<j<m 8ibj Vi®w;.
It 1s a straightforward exercise to verify that this is bilinear. To prove that we have
the universal mapping property, suppose that u:VxW—U is bilinear. Then define
A:VOW—U by ?L(vi®wj°) = (v}, w;) on the basis elements, and extend it by lin-

earity to the rest of VOW. Clearly it = Ao® for pairs of basis elements, and it is

not hard to show that they must be equal for any pair of elements. Similarly it is

not hard to show that this is the only possible A with the desired property. e

Exercise 0.4: Show that there is a natural isomorphism @ between
V*®@W and Hom(V,W). Hint: Show that there is a bilinear map from V*xW to

Hom(V,W) taking (¢,w) to the linear transformation (v [—=0(v)w). Show that this

map 1s surjective. Use dimension counting to show that it is an isomorphism. It

may help in thinking about this to notice that if {vi*,--,vy*} is a basis for V¥ and

{wi,+,wp} 18 a basis for W, @(vj*,wj) corresponds to the elementary matrix with

a 1 1n the (1,)) entry and zeros elsewhere.

Exercise (.5: Show that the vector space V*¥®V* is naturally isomorphic

to the vector space of all bilinear forms on V.
1. Representations, G-Maps, and Isomorphisms

Definition 1.1: Suppose that G is a finite group and V is a finite dimen-

sional vector space over a field k. A representation of G on V is a linear left ac-

tion of G on V. That is, we have a map GXxV—V; the 1mage of (g,v) under this

map 1s denoted g-v or simply gv. To say that it is a left action means:

(1.1.1) eV =y (e the identity in G)

(1.1.11) g(hv) = (gh)v V g,he G, veV
Linearity means:

(1.1.111) g(vV+w) = gv + gw VgeG, VvweV
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(1.1.iv) g(owv) = ogv V geG, veV, aek
By abuse of language we will often refer to the vector space V as the representation,
but we will always mean to include the action. We will also refer to representations
as G-modules. Although it is not necessary to assume that representations are
finite dimensional, we shall do so throughout as it makes some of the proofs sim-
pler technically. When we wish to particularly stress the ground field k, we say
that V is a representation of V over k.

Of course, it is possible to define representations using right actions, simply
by writing the group elements on the right in (i)-(iv). While the theory is symmetri-
cal, a subtle difference is introduced in changing (ii):

(1.1.11") (vg)h = v(gh).

In other words, (ii) says that in a /eft action the group element gh acts by applying h
first, then g; (i1') says that in a right action it acts by applying g first, then h. While
the latter might seem to make more sense a priori (since it allows one to read strings
of operations in the usual left-to-right order), most mathematicians are so accus-
tomed to writing functions on the left that we will stick to that convention. Thus we
assume throughout that all actions are left actions unless otherwise specified.

A completely equivalent characterization of a representation involves ho-

momorphisms of the group G. Given ge G, we can define a linear map Ty/(g) from
V to itselt (an endomorphism of V) by Ty,(g)(v) = gv; the linearity of Ty/(g) fol-
lows from (1.1.iii) and (1.1.iv). (We will often write just T(g) when the represen-
tation 1s clear from the context.) Itis an easy exercise to show that Ty/(g) is invert-
ible and in fact that (Ty(g))"1 = Ty(g-1). Thus Ty(g) is an element of the group of
invertible endomorphisms of V, which we shall denote by GL(V). Ty is a map
G—GL(V), and it follows from (ii) that this map is a group homomorphism.

Conversely, it 1s a simple matter to reconstruct a linear action from such a homo-

morphism.
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Our eventual goal is to understand all possible representations of a finite
group G, up to a suitable notion of isomorphism.

Definition 1.2: Let V, W be representations of G. ®:V—W is a G-map
if it 1s a linear map which preserves (commutes with) the G-action, i.e. D(gv) =

gd(v). A G-isomorphism is a G-map with an inverse which is also a G-map.

1'wo representations are isomorphic if there is a G-isomorphism between them.

Exercise 1.3: If ®:V—W is a G-map which is invertible as a linear trans-
formation, show that @-1 is a G-map, i.e. @ is a G-isomorphism.
Exercise 1.4: If aek, multiplication by o is a G-map of V to itself (i.e. a

G-endomorphism of V). If o # 0, it is a G-isomorphism.

2. Examples

Example 2.1: If G is any group and V any vector space, the trivial re-

presentation of G on V is given by gv = v. Show that this corresponds to the

trivial homomorphism G—GL(V).

Example 2.2: Let G denote the cyclic group of order n, C,,, and let g be

a fixed generator of G. Let k be the field C of complex numbers, and let V be C
considered as a one-dimensional vector space. We will find all possible representa-
tions of G on V, by finding all homomorphisms G—GL(V). A linear map of C to
itself 1s simply multiplication by a complex scalar; it is easy to see that GL(V), the
group of invertible self-maps of V must be isomorphic to C*, the group of non-
zero elements of C under multiplication. Since gy has order n, it must map to an
nth root of unity. (Verify this.) From the n n-th roots of unity, we obtain n distinct
representations by Ty(gp) = e2mki/n k =(,...,n-1. Each Ty, is extended to make it a

homomorphism by taking Ty (gg™) = (e2nki/n)m = ¢2nkmi/n
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Exercise 2.3: Show that no two of these n representations are isomor-
phic. Hint: show that if T and T' are isomorphic representations, T(g) and T'(g)

are similar linear transformations and hence must have the same eigenvalues.

Example 2.4: The dihedral group of order 2n is given by generators a
and b satisfying the relations a® = e, b2 = ¢, and bab-! = a-l. This is the group of
symmetries of a regular n-gon, and as such it has a natural representation as rigid
motions of the plane, with a representing a rotation by 27/n, and b representing a
reflection along a line of symmetry through the origin. In fact, as above there is a

family of representations on a two dimensional vector space (over R or C) given by

the following matrices:
[ cos 2nkm/n  -sin 2wkm/n 1 0
Ty(@m) = | Tx(b) =
| sin 2wkm/n  cos 2wkm/n 0 -1 |

Note that T; corresponds to the "natural” representation mentioned above. Also,
while the action of this representation is closely linked to the previous example, T,
cannot be thought of as a one-dimensional complex representation, since b would
need to act by complex conjugation which is not C-linear.

Exercise 2.5: Verify that this is a representation by showing that these

matrices satisfy the defining relations of the group. Show that the representations

given by Ty and T, are isomorphic.

Example 2.6: An arbitrary abelian group G is a direct product of cyclic

groups, G = CyxCyx...xC,, where C; is of order n;. Since everything is com-
mutative, we can simply multiply the representations of the individual factors to get

a representation of G:
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T((glaagm)) = Tkl(gl) o Tkm(gm) 0 < kl < I,

where T; 1s as in example 2.2.

Exercise 2.7: Show that this gives IGl = ny...n,, non-isomorphic repre-

sentations of Q.

Example 2.8: Let G = S, the symmetric group on n objects, thought of

as self-maps of the set {1,...,n}. Let B be a vector space of dimension n with basis

V1,--sVp, and let S, act on V by permutations Ty (7)(v;) = Va()» and extend lin-
early. This 1s called the permutation representation.
Exercise 2.9: Verify that this is a representation; the only thing that really

needs checking is that this is a left action.
Note that S, also has a non-trivial one-dimensional "sign representation”

given by ® — sgn 7.

Example 2.10: Let G be any finite group and let k[G] denote the vector
space over k of dimension |Gl whose basis consists simply of the elements of G
(the reason for this notation is because k[{G] is actually a ring, as we shall see in
section 9). k[G] consists of formal linear combinations of elements of G,
deG 8. Then G acts on k[G] by h( de G agg) = de G ;ag(hg). This 1s called
the regular representation of G, and it shows that any group has a representation
in which every non-identity element acts non-trivially. (Note that we could con-
struct this same representation by first using Cayley's theorem to embed G in the
symmetric group S, and then taking using the permutation representation of ex-
ample 2.8.)

Exercise 2.11: Show that: (i) the representation k[G] is G-isomorphic to

the vector space of functions f: G — k with the action (hf)(g) = f(h-1g); (ii) we

could give a different but G-isomorphic action on these functions by (hf)(g) =
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t(gh). What 1s the isomorphism with k[G] in this case? (iii) Show that the action on

functions given by (hf)(g) = f(hg) is not a left action, but a right action.

Example 2.12: Let H be the algebra over R of quaterions, given by H =
{a+bi+cj+dkla,b,c,de R}, with multiplication given by the rule ij = k, jk
=1, ki=},and ji =-k, kj = -1, ik =-j. Verify that Q = { &1, 4, &, +k } is a group
of order eight (called the quaternion group of order eight) which acts on H by left
multiplication, giving a four-dimensional representation over R. If we treat H as a
vector space over C by letting C act by right multiplication, this gives a two-

dimensional representation over C. (Why do we let C act by right multiplication?)

Exercise 2.13: Show that the center of Q is {*1}. Show that Q/{*1} is

1somorphic to CyxC, and use this to construct three non-trivial one-dimensional

representations of Q.

3. Submodules, Invariants, and Averaging

Definition 3.1: If V is a G-module, W < V is a submodule if it is a
subspace of V which is preserved by the G-action, i.e. gW ¢ W Vege G (in which
case gW = W). A G-module V always has two trivial submodules, {0} and V it-
selt (of course this is different from being a trivial representation). V is irre-
ducible if it is non-zero and has no submodules other than the trivial ones. We
shall see that irreducible representations are the building blocks out which all repre-

sentations are made.

Exercise 3.2: Show that a trivial representation is irreducible if and only if

1t 1S one-dimensional.
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Exercise 3.3: If @: V — W is a G-map, show that the kernel of @ is a
submodule of V and the image of ® is a submodule of W.
Exercise 3.4: Consider the permutation representation of S, on the n-

dimensional vector space V of example 2.8. Show that the subspace Vo spanned

by the vector v + - + v, is a submodule. Show that the subspace V = { Zf‘zlaivi

)1 a; =0} is a submodule.

Definition 3.5: Given a G-module V, the invariants of V under the
action of G (denoted VO) is the set of elements of V fixed by the G-action, i.e. VO
={veVlgv=v,VgeG}. Itiseasy to see that VU is a submodule of V.

Exercise 3.6: Show that if V is irreducible, VO = {0}, unless V is the

trivial representation (in which case V is one-dimensional).

Exercise 3.7: Show that V;, of exercise 3.4 is equal to V.

Definition 3.8: Given a G-module V, the averaging map Ay: V — V is

. 1
given by Ay(v) = j5i2ge G 8V-

Geometrically, Ay(v) is the center of mass of the G-orbit of v. Of course,

we cannot take l_(l}_l if the characteristic of k divides IGl. To avoid such problems,

we'll assume from now on that k has characteristic zero, although for much of what

follows it is sufficient to assume only that the characteristic of k does not divide IGl.

Note that as an endomorphism of V, Ay = I"(l}T ec G 1v(8).

The following properties of Ay follow directly from the definition:

(3.8.1) gAy(v) = Ay(v), i.e. Ay(v)e VO
(3.8.11) Ay(v)=v ifveVG
(3.8.iii) Avy(gv) = Ay(V)
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Properties (1) and (i1) show that Ay is a projection of V onto VO. From (i) and (iii)

we see that Ay (gv) = Ay(v) = gAy(v), so Ay is a G-endomorphism of V.

Exercise 3.9: Verify properties (3.8.i-iii) of Ay.
Exercise 3.10: If V is irreducible, show that Ay is either O or the identity,

and the latter obtains only if V is trivial.

Exercise 3.11: Returning to exercises 3.4 and 3.7, show that V, is the

image of Ay and V is its kernel.

4. New Representations from Old

It V and W are G-modules, we can make their direct sum VW into a G-
module 1n the obvious way: g(v,w) = (gv,gw). Similarly let G act on the tensor
product V®OW by g(v®w) = (gv) ® (gw). (The existence of a linear map taking
v®OWw to (gv) ® (gw) follows from the universal mapping property of tensor pro-
ducts.)

It 15 slightly trickier to make the dual space V* into a representation. If S

and T are linear endomorphisms of V we have maps S and TI: V* — V*, but
there 1s a "twist": (SoT)¥ = T o S, The result of this is that letting g act on V* by
(Ty(g))Ir gives a right action rather than a left action (check this). We can correct

this by letting g act on V* by (Ty(g1))—the inverse introduces a compensating
twist.

Exercise 4.1: Show that this does give a G-action.

Exercise 4.2: Show that the space of k-valued functions on G, with the
action (hf)(g) = f(h-1g) considered in exercise 2.11 (i) is isomorphic to k[G]* in a

natural way.
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Finally, if V and W are G-modules, we can make a G-module out of
Hom(V,W), the space of all (k-)linear maps from V — W, by introducing a similar
twist. For @ € Hom(V,W), let g = Ty(g) o ® o Ty(g-1). The crucial fact about

this representation is this:
Proposition 4.3: ® € (Hom(V,W))G if and only if ® is a G-map.
Proof: ® ¢ (Hom(V,W))U = V geG g =P < V ge G Ty(g) o P o
Ty(gH) =0 o VgeGTyw() o P =PoTy(g) &V geG, ve V gd(v) = O(gv)

< D isa G-map. e

Exercise 4.4: Show that the natural isomorphism V*®@W — Hom(V,W)

of exercise 0.4 is compatible with the G-structures given above, that is, that the

1Isomorphism is in fact a G-isomorphism.

Exercise 4.5: Show that if a G-map ®: V — V is a projection, then V is

G-1somorphic to a direct sum of the kernel of @ and the image of @. Conclude that
in exercise 3.11 V=V5® V.

Exercise 4.6: Let G be the cyclic group with two elements {e,o} acting
on the space V of real-valued functions of a real variable. Let o act by reflecting the
graph of a function in the y-axis, (of)(x) = f(-x). Use the averaging map and the
previous exercise to decompose any function as the sum of an even function and an

odd function. [Do not worry about infinite dimensionality.]
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5. Complete Reducibility

Here 1s a crucial piece of our story:

Definition 5.1: A G-module V is said to be completely reducible if it
can be decomposed as a direct sum of irreducible representations.

Theorem 3.2: Every finite dimensional representation of a finite group G
1s completely reducible.

Although finite dimensionality is not a necessary hypothesis here, we
assume 1t to simplify the proof—but see exercise 10.4.

Proof: Let V be a representation, and assume by induction that the result
holds for all representations of dimension smaller than V. If V is irreducible, the
theorem 1s trivially true. Otherwise it has a non-trivial submodule W. If we could
find a submodule W' € V with V = W®W' (that is, a complement to W), we
would be done: non-triviality of W implies that both W and W' have dimension
smaller than V, hence each is a direct sum of irreducibles, and the result follows.
Thus we need only the following:

Lemma 5.3: Let V be a G-module, W a submodule. Then there is a sub-
module W' of V such that V= W®W'

Proof: Let te Hom(V,W) be a projection of V onto W. The kernel of = is

a complement to W as a subspace of V, but it need not be a submodule of V; our
strategy 1s to turn 7t into a G-map by averaging, because the kernel of a G-map is
always a submodule. Let ' = Agom v wyT T is in (Hom(V,W))G, hence 7' is a

G-map by proposition 4.3. Since w'e Hom(V,W), we need only show that it is the

1dentity on W to show that 7' is a projection onto W. Then we can complete the

proof by taking W' = ker 7', since exercise 4.5 tells us that V=im ' @ ker t' =

W oD W,
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| 1 .
For we W, t'(w) = @Ege(} (Tw(g)onoj-v(g'l))w

- 1(13|ng G Tw(@)(@(Ty(g-)w)).

%’i’ geG g(n(g-lw)).

If we W, g-lw e W, since W is a submodule. Then n(g-lw) = g-lw, since mis a

projection onto W. Finally, g(n(g-lw)) = g(g-lw) = w, and so T'(w) = I_(IET ge GW

=w. Thus 7' 1s a projection onto W and the proof is complete. (Note that the
essential point of this last argument is that since restricted to W is the identity, it is
a G-map. Thus is it in (Hom(V,W))G by proposition 4.3, so that when we average
1t, 1t 18 still the 1dentity map by (3.8.11).) e

Note that this proof depends on averaging, and hence on our earlier
assumption that k has characteristic zero. When the characteristic of k divides IGl,
theorem 5.2 1s not valid. On the other hand, the result does hold when G is a com-
pact Lie group—because the same averaging process works.

Of course when we split V completely nto 1rreducibles, some of the sum-
mands may be 1somorphic to one another. Suppose that Vy,...,Vy are the non-iso-
morphic represenations occurring in V, and there are nj copies of V; , which we call
Vi1,...Vin; . Then V 1s the direct sum

(V11®V 120 ®V] 1D D(V1@@Vin)P-D(Vk1D:--®Vk nr). Up to
1Isomorphism, we can write V as n;V{®---®ny Vy or @1;:1 n; V;, indicating that V;

occurs 1n V with multiplicity n;. The splitting into individual irreducibles Vj j is not
uniquely determined. This 1s analogous to the situation in a vector space, where
one can think of a basis as spliting the vector space into a direct sum of one-dimen-

sional—1.¢e., irreducible—subspaces, but there are infinitely many choices of bases.

However, the numbers nj are uniquely determined (see corollary 8.7 for the proot),

just as the dimension of a vector space (the number of one-dimensional subspaces

given by the basis) i1s. Furthermore, the direct sum of all the irreducibles of each
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1somorphism type is also uniquely determined, that is, Vi 1®--®Vj y; 1s indepen-
dent of any choices made in the decomposition (see exercise 6.9 for the proof).

Exercise 5.4: As a special case, verify the two facts metioned above for

the trivial submodule. Let V¢ denote the trivial represenation, and show that

V1,19V 20--@V i = VG, hence this sum is independent of any choices.

Similarly, n; = dim VO is uniquely determined.

Exercise 5.5: Give an alternate proof of lemma 5.3 valid for k = R, by
proving the following:

Theorem 5.6: Let V be a representation of G over the field R. Then there
18 an inner product <, > on V in which each G acts orthogonally, i.e. each T(g) is
orthogonal, i.e. <gv,gw> = <v,w>.

Then complete exercise 5.5 by proving that under such an inner product the
orthogonal complement of any submodule is a submodule. (Hint for theorem 5.6:
Letb e V*®V* be any positive definite inner product. Show that Ayxgy+b is a
positive definite inner product with the desired property.)

Exercise 5.7: Modify this proof to work over k = C, using Hermitian
inner products and unitary operators.

Exercise 5.8: Let V be a representation of G over an algebraically closed
field. Show that for every ge G, Ty/(g) can be diagonalized and that the eigen-
values are n-th roots of unity, where n = |Gl. (Here are hints outlining two proofs.
Hint 1 (valid over C only): Use the previous exercise and the diagonalization theo-
rem for unitary operators. Hint 2 (valid when characteristic of k does not divide
IGl, 1n particular for characteristic zero): Use Jordan canonical form and the fact that
T(g) 1s of finite order.)

Exercise 3.9: Prove that the n one-dimensional representations of the

cyclic group C, given in example 2.2 give all possible irreducible representations of
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C, over C. (Hint: Apply the preceding exercise to T(g) to show that any represen-

tation decomposes as a direct sum of the desired type.)

Exercise 5.10: Prove a result analogous to exercise 5.9 for an arbitrary
finite abelian group, using the one-dimensional representations of example 2.6.
(Hint: Prove the fact that if A and B are linear transformations which commute, then

A preserves the eigenspaces of B.)

6. Schur's Lemma and its Consequences

The following simple lemma turns out to be crucial:

Lemma 6.1 (Schur's lemma): Let V, W be irreducible G-modules, and

let @:V—-W be a G-map. Then either ® =0 or @ is a G-isomorphism.

Proof: Suppose @ # 0. Then ker @ # V. But ker @ is a submodule, so by
1irreducibility ker @ = {0} and @ is one-to-one. Similarly, since @ # 0, im O #
{0}, soim ® =W, and @ is onto. Thus D is an invertible linear map, hence a G-
1Isomorphism by exercise 3.1. e

It V 1s a G-module, the G-endomorphims of V, Endg(V) = { G-maps from
Vtoitself} € Hom(V,V), is a finite dimensional vector space over k. It contains
the 1dentity operator I and all scalar multiplication operators kI; if V # {0} these
maps form a one-dimensional subspace. Furthermore, Endg(V) is closed under
composition and the elements of kIl commute with every element, so it forms an al-

gebra over k. Schur's lemma tells us that if V is irreducible, any non-zero element

of Endg(V) 1s invertible. In other words, we have:

Corollary 6.2: If V is an irreducible representation of G, Endg(V) forms

a division algebra over k.
The tollowing theorem tells us that if k is algebraically closed, the situation

1S even simpler.

Representation Theory 16 Nathaniel S. Kuhn



Theorem 6.3: Let V be an irreducible representation of G over an alge-
braically closed field k. Then Endg(V) = KI, i.e. the only G-endomorphisms of V
are given by scalar multiplication.

This follows immediately from:

Lemma 6.4: Let D be a finite dimensional division algebra over an alge-

braically closed field k. Then D =k.
Proof: Let d € D. The idea of the proof is that powers of d generate a
finite dimensional extension field of k, which must be trivial since k is algebraically

closed. By finite dimensionality, powers of D must be linearly dependent, hence d

satisties some polynomial p(x) € k[x] of smallest possible degree. If degp > 1, p
must factor non-trivially over k, 1.e. p(x) = p1(X)p,>(x), since k 1s algebraically
closed. Now O =p(d) = p1(d)pr(d). Since D is a division algebra it has no zero
divisors, so py(d) = 0 or p»(d) = 0 contradicting the minimality of p. Thus deg p <
1 and 1t follows thatd € k. e

From now on, unless explicitly stated otherwise, we assume that k is alge-
braically closed; take k = C 1if you like.

Propostion 6.5: Suppose that V and W are irreducible G-modules and
that @:V—W is a non-zero G-map (hence an isomorphism by Schur's lemma). If
O :V—-W 15 another G-map, @' = o D.

Proof: ®-1lo®' e Endg(V); by the above theorem ®-lo®' = I, and hence

D' =D, e
Corollary 6.6: Let V, W be irreducible G-modules. Then:
| 1 V 1somorphic to W
dim {G-maps VoW } =- .
L 0 otherwise

Exercise 6.7: Show that if V 1s reducible, EndG (V) contains zero-divi-

sors, and hence 1t cannot be a division algebra; this 1s a converse of corollary 6.2.
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Exercise 6.8: This problem demonstrates that the hypothesis that k be
algebraically closed is necessary in theorem 6.4. Consider the quaternion group Q
of order eight from example 2.12, and consider the representation H as a four-
dimensional representation over the non-algebraically closed field R. Show that

EndQ(H) 1 anti-isomorphic to the division algebra H (that is, there is a map ¢

which 1s an isomorphism except that ¢(ab) = ¢(b)d(a). This twist occurs because

we let H act by righr multiplication). Now consider H as a two-dimensional com-
plex representation. Why is the endomorphism group smaller?

The following exercise proves the results asserted in the discussion preced-
Ing exercise 5.4:

Exercise 6.9: (1) Suppose that W is an irreducible G-module, V is a G-

module split into irreducible components, and ®: W—V is a G-map. Show that the
1mage of @ 1s contained in the sum of the irreducible components of V isomorphic
to W. Hint: Apply Schur's lemma to the projection of @ onto each irreducible

component of V. (11) Use the result in (1) to prove that the sum of the irreducibles in

a particular isomorphism class is independent of the splitting of V.

7. Characters

This section and the following one make fundamental use of the finite
dimensionality of our representation, since it relies heavily on traces of linear trans-
formations. Similarly, it assumes that k = C, since complex conjugation is ex-
poited throughout. Both of these assumptions will be used from now on.

Definition 7.1: Let V be a representation of G. The character of the

representation V 1s a complex-valued function on G, xy: G—=C, given by vy (g) =

tr Ty (g).
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Note that x(hgh‘l) =tr (T(h)T(g)T(h‘l)) =tr T(g) = %(g), that 1s, Y 1S con-
stant on the conjugacy classes of G (a class function). Also, for a one-dimen-

sional representation we can identify the character with the representation.

Proposition 7.2: (i) yy(e)=dimV

i) xvgh= yxv(®

(1) Xyvewl(g) = xv(g) + xw(g)

(1v) Xvew(®) = xv(@xw(g)
(V) xv+(g) = xv(g)

(V1) XHom(v,w)(&) = Xv(g) xw(g)

Proof: Exercise. (For (ii), use the fact that T(g) has finite order or use

exercise 5.7 or 5.8 to show that any eigenvalue o lies on the unit circle. Then use

ol = o . For (iv), use the fact that if {vi} ({wj} repectively) form a basis for V

(W respectively), then vi®wj forms a basis of V®OW. For (vi), use (iv), (v), and

exercise 4.4.)
It follows that if V = @, n;Vj, then gy = > & qnixv;

Exercise 7.3: Compute the character of the the representations of the
dihedral group given in example 2.4.

Exercise 7.4: Show that the character of the regular representation
(example 2.10) 1s

Gl g = ¢
XR(8) = { 0

otherwise

Exercise 7.3: For the permutation representation of S (example 2.8),
show that ¥y(7) 1s the number of fixed points of m. Using the notation and result

of exercise 4.5, show that yv(m) = %yv(%n) - 1.

Exercise 7.6: Compute the character of the representation of Q on H of

example 2.12, first as a representation over R, then over C.
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Exercise 7.7: Show that the class functions on G form a subspace of all

C-valued functions on G, whose dimension is the number of conjugacy classes in

G.

8. Orthogonality Relations

We can use the character of the representation V to count the dimension of
VG (which equals the number of trivial irreducible components in V by exercise

5.4).

Lemma 8.1: dim VG = Tclﬁ geG Xv(8)

1 1
Proof: :=20cGXv(8) = jGleecc tr Tv(g)

1
=1r [ @zge G 1v(gl
= {r AV
But Ay is a projection of V onto VYU, and the result follows from this exercise:

Exercise 8.2: Let t: V>WCV be a projection. Then tr © = dim W.

(Hint: This 1s easy with the right basis for V.)

We can define a Hermitian inner product on C-valued functions on G by

<f1,fp> = 2,cg f1(g) fo(g). With respect to this inner product, the characters of

irreducible representations are orthonormal, as stated in the following centrally
1mportant theorem:

Theorem 8.3 (Orthogonality Relations): Let V, W be irreducible

representations of G. Then:
1 1t V 1s 1somorphic to W

<AV-AW> = i 0

otherwise

1 ,
Proof: <yv,(w> =@deg Xv{g) xLwig)

1 . y
=G deG XHom(v,w)(&) by proposition 7.2.vi,
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= dim Hom(V,W)G by lemma 8.1,
1 1t V 1s 1somorphic to W

= < by 6.6.
. 0 otherwise s ’

An 1mmediate consequence of this theorem is that the characters of irre-
ducible representations, being orthonormal, are linearly independent class func-
tions. By exercise 7.7, the dimension of the space of class functions is equal to the
number of conjugacy classes in G; thus we have the following result:

Corollary 8.4: The number of irreducible representations of a finite group
G 15 less than or equal to the number of conjugacy classes of G.

We shall see in section 9 that these numbers are in fact equal.

Exercise 8.5: Use the inequality of corollary 8.4 to show that the irre-
ducible representations over C of a finite abelian group given in example 2.6 are the
only possible ones, and prove that in this particular case the inequality is an equal-
1ity. Note how much easier this proof is than the one outlined in exercise 5.9.

Exercise 8.6: Show that the Hermitian inner product on functions given

above 1s invariant under the G-action on functions given in exercise 2.11.

Using characters we can compute the multiplicity of an irreducible repere-
sentation in an arbitrary representation, and deduce a string of fundamental results:

Theorem 8.7: Let V be a representation of G, and W an irreducible repre-

sentation. Then <yw,xv> 1s equal to the multiplicity of Win V.
Proof: Suppose that V=@ lleniVi where the V;j are distinct irreducible
~ _ k ~ — Nk . W
representations. Then <yw,xv> = <XW,Zi:1niXV1~> = D =1 i<YWoXvi>. I Wis
not among the Vj, then <yw,Xvi> 1s zero by the orthogonality relations, and the

formula follows since the multiplicity of W is zero. If W is isomorphic to Vj, then

<XW>XVi> = 0ij, SO Z%(=1ni<XW»XVi> = zikzlniSij = nj, proving the formula. e
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Corollary 8.8: The multiplicities of irreducible representations in V are
independent of the splitting of V.
Corollary 8.9: A representation is determined up to isomorphism by its

character.

Proposition 8.10: Let V be an irreducible representation of G. Then V
occurs in the regular representation k]G] of G with multiplicity dim V. In particu-
lar, every irreducible representation of G occurs in k[G].

Proof: By theorem 8.7, the multiplicity is
1
<XV:XR” = |G|2geG xv(g) Xr(8)

= r(% xv(e) G by exercise 7.4
= Xv(e)
=dim V by proposition 7.2.1. e

Corollary 8.11: There are only finitely many isomorphism types of irre-
ducible representations of G.

Corollary 8.12: Let V;,...,V}, be the distinct irreducible representations
of G, and let dj be the dimension of V;. Then Z?:ldiz = |Gl.

Proof: By the previous proposition, k[G] = @?zldiVi. But dim k[G] = |G,

and dim ®;'_,d;V; = Y1 ,d2. o

Exercise 8.13: If V = @li(:lniVi where the V; are distinct irreducible

representations, show that <yv,xv> = 2;—1n;%. Use this result to give another
proof of corollary 8.12. Also, prove a partial converse to theorem 8.3: if <yv,xv>

= 1, then V 1s irreducible.

Example 8.14: What are the irreducible representations over C of S3?
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53 has three conjugacy classes—the identity, the (three) transpositions, and

the (two) 3-cycles. We know two irreducible representations—the trivial represen-

tation and the sign representation—whose respective characters 7y and y(, are:

x1(e) =1 x1((12)) =1 x1((123) =1
Xo(e) = 1 X2((12)) =-1 Yo(123) = 1
Let 3 be the character of the representation Vy of exercise 3.4. By exercise 7.5,
X3(e) =2 x3((12))= 0 v3((123)) = -1

<x3.X3> = (1/6) (122 + 3-02 + 2:(-1)2) = 1, s0 3 is irreducible by the previous
exercise. Since Sg has three conjugacy classes, it has at most three irreducible

representations (by corollary 8.4), and thus we have found them all.

Corollary 8.12 gives a numerical constraint on the dimensions of the irre-
ducible representations which can be used in the computation of the table of charac-
ters of all the representations of a given finite group.

Exercise 8.15: Use corollary 8.12 and the orthogonality relations to find

the character table of S3 without using any knowledge of the representation Vj.

You may use your knowledge of 1 and .

We will not prove another important numerical constraint: the dimension of
an 1rreducible representation divides the order of the group (in fact, it divides the
index of the center in the group). This follows from results on algebraic integers.
See [Serre, p. 53].

Exercise 8.16: Compute the character table of the dihedral group of order
2n, using the representations constructed in example 2.4, some of which may be
reducible. (Hint: It is easiest to understand the conjugacy classes in this group
geometrically in terms of their action on an n-gon. Treat the cases n even and n odd

separately.)
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Exercise 8.17: Find all the representations over C of the quaternion

group Q of order eight (See example 2.12 and exercise 7.6).

9. The Group Algebra

The previous section contained most of the basic results from representation
theory. In this section, we will translate the results of our earlier work into the lan-
guage of ring theory. We will use the structural information we gain to tie up a
loose ends from before: theorem 9.9 shows that a finite group has as many irre-
ducible representations as it has conjugacy classes, strengthening our earlier
inequality in corollary 8.4.

From now on, all rings and algebras will be assumed to have a multiplica-
tive identity. In particular, all direct sums of rings must be finite.

We can define a multiplication on the regular representation k[G] (example
2.10) simply by extending the group multiplication linearly: (de Gagg)(Zge GDg8)
= zg,heG agbp(gh). This algebra is known as the group ring or group algebra,
and 1s denoted k[G] or simply kG. The element 1-e acts as a multiplicative identity,
and we shall simply write it as 1. Thus k[G] is the algebra generated over k by the
elements of G with their group product, hence the notation.

Exercise 9.1: Verify that k{G] is in fact an algebra over k (i.e. a ring
containing an 1somorphic copy of k in its center), and that it is commmutative if and
only 1f the group G 1s commutative.

A representation can be turned into a left module over the group ring by
defining (de GagBIV = de Gaggv. Conversely, any left module over k[G] gives a
representation just by restricting the action to group elements. In fact, this corre-
spondence between representations and modules over k[G] is the origin of the

1t

terminology "G-modules,” "submodules,"” etc., for representations of G.
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Example 9.2: V is irreducible as a representation if and only if it is simple
as a k[G] module. (A module over a ring R is simple if it has no submodules
other than {0} and itself).

Example 9.3: The regular representation corresponds to k[(G] acting on
itself on the left.

Exercise 9.4: Prove that a module over k[G] is finitely generated if and
only if the corresponding representation is finite dimensional. You will need to use

the fact that G is finite.

Exercise 9.5: If CcG is a conjugacy class, show that Xqc c g lies in the

center of k|G], denoted Z(k[G]). Show that such elements form a basis for the
center as a vector space over k, and that the dimension of the center 1s therefore
equal to the number of conjugacy classes of G.

Exercise 9.6: Rewrite the multiplication law on k[G] in terms of functions
on G (exercise 2.11). Note the similarity to "convolution” in Fourier analysis.
Show also that the center of k[G], corresponds to the class functions, and thus that

exercise 9.5 and exercise 7.7 state the same result.

Our first goal 1s to show k[G] can be split as a direct sum of matrix alge-

bras. If V 1s a representations of G, every element of k[G] acts linearly on V, and

hence we have a ring homomorphism ki G]—Endi (V). Of course, if V is n dimen-

sional, Endg(V) 1s simply isomorphic to the ring Mat,(k) of nxn matrices over k. If

V1,+, Vp are the distinct irreducible representations and Vi 1s of dimension dj, we

can combine these homomorphisms into a map k[G]%@?zlEndk(Vi) =

@?leatdi(k). This map reflects the action of k|G] on each irreducible representa-

tion of G. Using the results of section 8, which were derived for k = C, we can
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prove the following theorem, which is proved for more general ground fields in

exercise 9.17:

Theorem 9.7: The group algebra C[G] is isomorphic to the direct sum
®. Endc(Vi) ~ ®" Matg(C).

Proof: An element of ae C[G] is in the kernel of the homomorphism into

@?:lEndC(Vi) exactly when it acts as multiplication by zero on any irreducible

representation of G, and hence on any representation of G (in particular on the

regular representation itself). Hence a-1 =0, so a =0, and the map is injective.
The dimension of ®_ Endc(Vj) = ®! ,Matg,(C) is YIL,d;2, which is IGl by

corollary 8.12. But |Gl is the dimension of k[G], and hence the map is surjective.

Exercise 9.8: Let V be an irreducible representation of a finite group G.
Then the linear transformations {Tvy(g) | g€ G} span the space of all k-linear self
maps of V, Endg(V). We shall see later that we can prove this result as a corollary
of Burnside's theorem 10.17.

We are finally in a position to prove the following result:

Theorem 9.9: There are as many irreducible representations of a finite
group G as there are conjugacy classes in G.

Proof: Use the following two exercises to show that the number of conju-
gacy classes in G equals dimg Z(k[G]), which is the number of conjugacy classes
in G by exercise 9.5.

Exercise 9.10: If Ry,--- Ry are rings, then the center Z(@?z Rj) =

h
&P i=1Z(R]'.‘).

Exercise 9.11: The center Z(Maty(k)) consists of the diagonal matrices.

Hint: A matrix Ze Z(Maty(k)) must commute with the elementary matrix Ajj; which
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has a 1 1n the (1,j) entry and zeros elsewhere. Alternatively, die-hard computation-
haters can prove this result in the following way: Regarding Maty(k) as endomor-
phisms of kB, show that for v € k™ there is an element of Maty(k) whose zero-
eigenspace consists solely of multiples of v. Then use the hint to exercise 5.10 to
show that Z must preserve this subspace, that is, that v is an eigenvector of Z.

Finally, prove that since every vector is an eigenvector of Z, Z must be a scalar

multiplication.

The goal of the next few exercises is to give another proof that k[G] is iso-
morphic to (-B?=1Matdi(k) (part of theorem 9.7). The proof is based on computing

the ring EndyG1(k[G]) and showing that it is "almost isomorphic" to k[G]. Unlike
the previous proof, it 1s independent of the material on characters developed in sec-
tion 8; hence it is valid over an arbitrary algebraically closed field whose character-
1stic does not divide the order of G. In particular, the results 9.8-11 remain valid
over such a field. Many of the results presented below will be used heavily in sec-
tion 10.

Exercise 9.12: If R is a ring, show that nxn matrices with coefficients in
R, Maty(R) form aring. (We are simply verifying that the commutativity of R is
not essential in working with matrices over R).

Exercise 9.13: LetR be aring, and let E=E1®--®E and F =
F1©®---@F, be direct sum decompositions of modules over R. Show that
Homg(E,F) 1s naturally isomorphic to @1<j<m, 1<j<nHOmMR(E;,Fj) by decompos-
ing ¢ € Hompr(E,F) as an mXxn matrix [§ij]1<i<m, 1<j<n. Show that under this

isomorphism, the composition of two maps (when defined) follows the usual law

ot matrix multiplication [¢'c¢];j = Z}I(l:lq)'ikoq)kj«
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Exercise 9.14: Show that if k is algebraically closed, Endgkig1(k[G]) 1s
isomorphic to a direct sum @] Matg(k), where d; is the multiplicity in k[G] of the

1-th 1rreducible representation. Hint: Use the decomposition of k[G] into irreducible
G-modules, the previous exercise, and proposition 6.5.

Note that when k # C, we have not proved the results of proposition 8.10:
that d; 1s equal to the dimension of the i-th irreducible representation, and that every
1rreducible representation occurs in k[G]. The first of these follows from exercise
9.17 and exercise 10.1.vi and vii, while the second can be deduced from exercise
10.15.

Exercise 9.15: (i) Let R be a ring. Show that the self-maps of R which
commute with lett multiplication (i.e. ¢(ab) = ad(b)) are all given by right multipli-
cation by elements of R. Hint: Where does the map take the element 1? (This is an
example of the principle that left multiplications commute with right multiplications
and nothing else. Specifically, if Ly is the map which left multiplies by x, and Ry is
the map which right multiplies by y, LxRy = Ryl.x—a formula which is equivalent
to the associative law. Furthermore, any map which commutes with all Ly must be
Ry for some y. This same principle can be used in the theory of Lie groups to
show that left-invariant vector fields are infinitesimal righr translations, since the
flows they generate commute with all left translations.) (ii) Show that the ring of
endomorphisms of R considered as a left R-module, Endr(R), is anti-isomorphic to
R (see exercise 6.8 for the concept of anti-isomorphism). (iii) Prove the result of
exercise 6.8 using part (ii) applied to the division algebra H.

Exercise 9.16: Demonstrate the following:

(1) The composition of two anti-isomorphisms is an isomorphism; hence if a

ring R 1s anti-isomorphic to R' and R", R' must be ismorphic to R".
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(1) The ring Mat,(k) 1s anti-isomorphic to itself (Hint: Use the transpose

map).
Exercise 9.17: Prove k[G] 1s isomorphic to @?le[atdi(k), using the

results of the previous three exercises.

10. Structure of Semisimple Algebras

In the previous section we concluded with a theorem on the structure of the
group algebra. In this section we will see (through a series of exercises) that this
result 1s a special case of the structure theory of semisimple rings. This structure

theorem 10.14 and Burnside's theorem 10.17 are the primary goals of this section.

Exercise 10.1: Let V be an n-dimensional vector space over k, (say kM)

with basis {vy,-,vn}. Let R = Endg(V) be the algebra of linear self-maps of V

(essentially the algebra of nxn matrices over k). The purpose of this exercise 1s to

give a picture of this algebra and its ideals. Prove the following assertions:

(1) Considered as an R module (with the action given by ¢ov = ¢(v) tor de R,
ve V), V 1s a simple R-module.

(i1) If WV is a subspace, the set { e R | image @ < W } is a right ideal
of R. If W = span {v1,---,vk}, this ideal consists of all matrices with zeros outside
of the first k rows. Show that there is a one-to-one correspondence between right
1ideals and subspaces of V.

(iil) If WV is a subspace, the set { @eR | W c kernel @ | 1s a left 1deal of
R. If W = span {vy,--,vk}, this ideal consists of all matrices with zeros in the first
k columns. Show that there is a one-to-one correspondence between left 1deals and

subspaces of V.
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(1v) The only two-sided ideals in R are {0} and R.

(v) Under the correspondence in (ii1), minimal left ideals (a left ideal is
minimal if it contains no left ideals other than {0} and itself, that is, it is simple as
a module) correspond to n-1 dimensional subspaces of V in a one-to-one fashion.

(vi) Matrices with non-zero entries in only the i-th column form a minimal
left ideal. What 1s the corresponding subspace? R can be written as a direct sum of
n minimal left ideals.

(vi) A minimal left ideal in R 1s isomorphic to V as an R-module. Hint: If
the 1deal corresponds to a subspace W, consider the evaluation map on a fixed vec-
tor not in W.

(viil) Any two minimal left ideals are conjugate by an inner automorphism

of R, 1.e. if L and L» are minimal left ideals, that there is a ¢ GL(V) such that L

= ¢La¢-L.

Exercise 10.2: Let R be a ring. Prove the following assertions:

(i) There is aring R which is anti-isomorphic to R. Hint: Take the same

underlying set as R, but with a different multiplication operation. Show that R

1s 1somorphic to R. You can do this directly or use the fact that the composition of

two anti-isomorphisms 1s an isomorphism (exercise 9.16.1).

(ii) Left R-modules correspond precisely to right R -modules. Similarly,

right R modules correspond to left R -modules.

(111) Exercise 9.15.11 can be interpreted as saying that Endr(R) 1s isomor-

phic to R ; we have essentially turned right multiplication by elements of R into a

left action of R .

(1v) Matn(R) 1s anti-isomorphic to Matn(_ﬁ-). Hint: Use the transpose map.

(v) It R 1s commutative, Maty(R) 1s anti-isomorphic to itself. (Use (iv).

Note that this 1s essentially identical to exercise 9.16.11.)
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Exercise 10.3: The goal of this exercise is to show that linear algebra still
works over a division ring D, that is, that commutativity is not a necessary hypo-
thesis.

(1) Show that finitely generated modules over division rings have bases
(L.e., are free modules) with a well-defined dimension. Hint: Convince yourself
that the usual proof works. From now on, we will refer to finitely generated mod-
ules over D as finite dimensional D-vector spaces.

(11) Show that linear transformations are represented by matrices. There are
two ways to do this, and it 1s probably worth going through them both. The first is
to develop the theory exactly as one does for vector spaces, taking care not to use
commutativity. You will notice that if you try to write the matrices on the left, you
will have to introduce a different law for matrix multiplication which switches the

order of the factors. The second way is to use exercise 9.13 to reduce the problem

to matrices, and exercise 10.2.iii to show that the entries liein D (since Endp(D)

must act by right multiplication). Note that putting the entries in D solves the

problem of switching the order of factors in the matrix multiplication law. Thus,
for example, if V is an n-dimensional D-vector space, Endp(V) is isomorphic to
Matn(f ).

(111) Show that the results of exercise 10.1 still hold over a division ring.

(1v) Let V be a finite-dimensional D-vector space, and let R = Endp(V) be
the ring of D-linear self-maps of V. Since V can also be regarded as an R-module,
we may consider the ring Endr(V) consisting of the self-maps of V which preserve
addition and commute with the action of R. Prove this non-commutative analog of
exercise 9.11: If V # {0}, then Endr(V) is isomorphic to D. Hint: (a) Since every
element of R = Endp(V) is D-linear, left multiplication of V by elements of D

commutes with the action of R. Thus we can find an isomorphic copy of D inside

Representation Theory 31 Nathaniel S. Kuhn



Endr(V). (b) Show that every element of Endr(V) is of this form, by using

elementary matrices in R.

Exercise 10.4: Let M be a module over a ring R. Show that the follow-
Ing conditions are equivalent:
(10.4.1) M is a direct sum of simple modules.

(10.4.11) M is a sum of simple modules.

(10.4.111) Every submodule of M has a complement in M. That is, if ECM

1S a submodule, there 1s a submodule F with E®F=M.

Under these circumstances, M 1is called a semisimple R-module. Note
that theorem 5.3 proves that if G is a finite group with the characteristic of k not
dividing IGl, then every module over k[G] is satisfies (ii1), and hence is semisimple.

Hint: For (11) = (111), try the special case with M a finite sum of simple
modules ©M;, and build F inductively as a (direct) sum of a subset of the M;.

Then adapt your proof using a Zorn's lemma argument. (iii) = (i) is essentially
theorem 5.2, but again you will need to use a Zorn's lemma argument. Readers
who wish to avoid Zorn's lemma will have to use finite sums in (1) and (i1), and add
a hypothesis in (111) that R is a k-algebra and M 1is finite dimensional as a k-vector
space.

Exercise 10.5: Show that quotient modules of semisimple modules are

semisimple. Similarly for submodules.

Exercise 10.6: A ring R 1s called semisimple if it is semisimple as a
module over 1tself. By exercise 10.4, R 1s semisimple if it is a direct sum of mini-
mal left ideals. Endg(V) 1s semisimple by exercise 10.1.v1, and Endp(V) 1s
semisimple by exercise 10.3.111. k[G] is semisimple when the characteristic of k

does not divide IGl, since every k[G] module is semisimple. Prove that this is the
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general case: 1f R 1s semisimple then every R-module is semisimple. Hint: Use the
fact that every module is the quotient of a free module.

Exercise 10.7: Prove that a finite direct sum of semisimple rings is
semisimple. In particular, @?leatdi(Di) 1s semisimple.

The goal of the following exercises is a structure theorem 10.14 which says
that every semisimple ring is of the form given in exercise 10.7.

Exercise 10.8: Prove that a semisimple ring is a finite direct sum of
minimal left ideals. Hint: Look at the decomposition of the element 1 under the
direct sum, and use the fact that elements of the direct sum can be non-zero in only
finitely many places.

Exercise 10.9: Prove Schur's lemma: if M and M' are simple R-modules,
then any non-zero element of Homgp(M,M') is an isomorphism. If M is simple,
then Endr(M) 1s a division ring,

Exercise 10.10: Let LcR be a minimal left ideal, and M be a simple R-
module. Then if L is not isomorphic to M as an R-module, LM = {0O} . Hint: If
Lm # {0} for some me M, show that the map L—M given by right-multiplication
by m 1s an 1somorphism.

Exercise 10.11: Prove that the following conditions on a ring R are
equivalent:

(10.11.1) R 1s semisimple and has only one isomorphism type of simple
module.
(10.11.11) R 1s semisimple and has only one 1somorphism type of minimal

left 1deal.

(10.11.111) R 1s a direct sum of isomorphic minimal left ideals.
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A ring satisfying these conditions is called simple. Show that Endg(V) is simple.
Hint: (1) = (11) and (i1) = (iii) are trivial. For (iil) = (1), use exercise 10.10 and
the decomposition of 1eR.

Exercise 10.12: Prove this structure theorem for semisimple rings: a

semusimple ring R is a finite direct sum of simple rings. Hint: Split R into minimal

left ideals, and collect these into h isomorphism classes: L 1,-+,L1 n; through

Lh,1,-"Lhnp. Let Rj be the sum of the minimal ideals of the decomposition which

fall in the 1-th isomorphism class, @;_ilLi,j. Then R = (-Dlillei, and clearly Rj 1s a

lett ideal and hence closed under multiplication. Use exercise 10.10 to show that
RiR;= {0} if i # j, and conclude that R; is a two-sided ideal. Finally, use the
decomposition of the identity of R to prove that R; has an identity element. R;is
simple by condition 10.11.iii.

Exercise 10.13: Prove this structure theorem for simple rings: a simple
ring R 1s 1somorphic to a matrix ring over a division ring. Here is an outline of a
proof (Note the similarity to exercise 9.17, and also compare exercise 10.3.iv):

(1) By exercise 10.11, R is a direct sum of minimal left ideals L1®---®L,.,
each of which 1s 1isomorphic to the unique simple module for R.

(11) Using exercise 10.9 (Schur's lemma), Endr(L;) is isomorphic to a fixed
division ring, call it D. We can regard each Lj as a D-vector space, and note that by
definition the elements of R act D-linearly.

(111) Using exercise 9.13, Endr(R) is isomorphic to the matrix ring

Mat,(D).

(vi) Using exercise 10.2.iii and iv, show that R is isomorphic to Maty( D ).

Combining exercises 10.12 and 10.13, we have proved the following:
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Theorem 10.14 (structure theorem for semisimple rings): Every

semisimple rings can be written as @?leatdi(Di), a direct sum of matrix rings over

division rings.

Exercise 10.15: Let R be a semi-simple ring, and let M be a simple R-
module. Show that M is isomorphic to one of the minimal left ideals of R. Hint:
Use exercise 10.10.

Exercise 10.16: Let Q be the quaternion group of order eight, of exercise

2.12. Exhibit R[Q] explicitly as a direct sum of matrix algebras over division

rings.

No introduction to this subject would be complete without the following
theorem, which was alluded to in exercise 9.8:

Exercise 10.17: Prove Burnside's theorem: let V be a finite-dimen-

sional vector space over an algebraically closed field k, and let R < Endi(V) be a
subalgebra such that V is a simple R-module. Then R = Endy (V).

(1) Show that Endr(V) = k. Hint: This is essentially theorem 6.3.

Next, let {vy,-,vn} be a basis for V, and let wi,---,wy be arbitrary ele-
ments of V. To show that every element of Endg(V) lies in R, it is enough to show
that R contains an element mapping the vj to the wj; do this by showing that the
map ®: R— V1 given by ®(r) = (rvy,---,rvy) is surjective. Here is an outline:

(11) Use the fact that V1 is a semisimple R-module to show that if Im @ #
V1, there 1s an R-homomorphism 7t: V-V mapping the image of ® to {0}. Hint:
Note that from the proof of exercise 10.4, we can take the complement of any sub-
module in V2 to be some VK.

(iii) Show that any R-map 7: VAV is of the form m(cty,,0t) = » 1k;oi

(here o € V) for fixed k; € k, 1<i<n.
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(1v) By examining @(1) conclude the result from (ii) and (iii), using the
linear independence of the v;.

Exercise 10.18: Use the previous exercise to give an alternate proof of

exercise 9.8.
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